Gaussian Process Regression Model for Crop Biophysical Parameter Retrieval from Multi-Polarized C-Band SAR Data

نویسندگان

چکیده

Biophysical parameter retrieval using remote sensing has long been utilized for crop yield forecasting and economic practices. Remote can provide information across a large spatial extent in timely manner within season. Plant Area Index (PAI), Vegetation Water Content (VWC), Wet-Biomass (WB) play vital role estimating growth helping farmers make market decisions. Many parametric non-parametric machine learning techniques have to estimate these parameters. A general approach that follows Bayesian framework is the Gaussian Process (GP). The parameters of this process-based technique are assumed be random variables with joint distribution. purpose work investigate Regression (GPR) models retrieve biophysical three annual crops utilizing combinations multiple polarizations from C-band SAR data. RADARSAT-2 full-polarimetric images situ measurements wheat, canola, soybeans obtained SMAPVEX16 campaign over Manitoba, Canada, used evaluate performance GPR models. results research demonstrate both full-pol (HH+HV+VV) combination dual-pol (HV+VV) configuration PAI, VWC, WB crops.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Processes Regression for Biophysical Parameter Retrieval from Imaging Spectroscopy Data: Opportunities for Sentinel-2 and -3

ESA’s upcoming satellites Sentinel-2 (S2) and Sentinel3 (S3) aim to ensure continuity for Landsat, Spot and MERIS observations by providing multispectral and hyperspectral images of high temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring, but therefore robust and accurate retrieval methods are needed. Machine learning algorit...

متن کامل

Crop classification using multiconfiguration C-band SAR data

This paper reports on an investigation aimed at evaluating the performance of a neural-network based crop classification technique, which makes use of backscattering coefficients measured in different C-band synthetic aperture radar (SAR) configurations (multipolarization/multitemporal). To this end, C-band AirSAR and European Remote Sensing Satellite (ERS) data collected on the Flevoland site,...

متن کامل

Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy

The future German Environmental Mapping and Analysis Program (EnMAP) mission, due to launch in late 2019, will deliver high resolution hyperspectral data from space and will thus contribute to a better monitoring of the dynamic surface of the earth. Exploiting the satellite’s ±30◦ across-track pointing capabilities will allow for the collection of hyperspectral time-series of homogeneous qualit...

متن کامل

Potential of C-Band Multi-polarized and Polarimetric SAR Data for Soil Drainage Classiication and Mapping 163 Potential of C-Band Multi-polarized and Polarimetric SAR Data for Soil Drainage Classiication and Mapping

Routine soil surveys determine many soil properties but soil drainage and soil moisture indicators (soil permeability, hydrologic soil group, etc.) are often the most relevant for agro-environmental purposes. They influence in-field crop yield and affect several environmental processes, i.e., soil erosion, nutrient and pesticide transport by runoff water and leaching, nitrification, and greenho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2022

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs14040934